If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+12X-1800=0
a = 1; b = 12; c = -1800;
Δ = b2-4ac
Δ = 122-4·1·(-1800)
Δ = 7344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7344}=\sqrt{144*51}=\sqrt{144}*\sqrt{51}=12\sqrt{51}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{51}}{2*1}=\frac{-12-12\sqrt{51}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{51}}{2*1}=\frac{-12+12\sqrt{51}}{2} $
| 4x-8=7+5x+3 | | a8=1.25 | | 4m-5-2m=9 | | 7x-3=19÷5x | | 7x-3=19/5x | | X^(2a)=3 | | Y=(2x-16)/4 | | 2(-8x-3)=134 | | 4x/5=(x+5)/6 | | x-1/5=5/6 | | 5v-8=28 | | 9.50x+75=340 | | 10w+6w³=0 | | 1+x=4-7xx+9 | | 4(x-2)/2=2(x+7)10 | | 14+7.4n=11+7.9 | | -9x+5x-26=13x-37 | | .4x=155 | | 24x/6=-4 | | 6(x-2)/9=2(x+7)/12 | | 5-8(x-6)=-2x | | (2x-15)/10= | | X^2+17x-416=0 | | (2x-15)/10=(x-9)/2 | | 60=–5(–6–3z) | | (x)/(8)-(1)/(4)=(5)/(12) | | 4(5x-8)=3(6-2x | | 50=10t-5 | | 3/g=18 | | -(x+4)+18=28 | | 7x+2x=x=3 | | --15+n=-9 |